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Abstract—Geospatial tagging (geotagging) is an emerging and
very promising application that can help users find a wide variety
of location-specific information, and facilitate the development of
future location-based services. Conventional geotagging systems
share some limitations, such as the use of a two-phase operating
model and the tendency to tag popular objects with simple
contexts. To address these problems, geotagging systems based
on the concept of ‘Games with a Purpose’ (GWAP) have been
developed recently. In this study, we use analysis to investigate
these new systems. Based on our analysis results, we design three
metrics to evaluate the system performance, and develop five
task assignment algorithms for a GWAP-based system. Using
a comprehensive set of simulations under both synthetic and
realistic mobility scenarios, we find that the Least-Throughput-
First Assignment algorithm (LTFA) is the most effective approach
because it can achieve competitive system utility, while its
computational complexity remains moderate. We also find that,
to improve the system utility, it is better to assign as many tasks
as possible in each round. However, because players may feel
annoyed if too many tasks are assigned at the same time, it is
recommended that multiple tasks be assigned one by one in each
round in order to achieve higher system utility.

I. INTRODUCTION

Recent surveys of the global mobile communications indus-
try reported that handheld devices have consistently outsold
laptop and desktop computers since 2004 [4]. Worldwide
mobile telephone subscriptions reached 3.3 billion (i.e., 50%
of the world’s population) in 2007, and 59 countries had
100% mobile penetration in 2008 [4]. Clearly, mobile and
wireless computing technologies affect every aspect of our
working and living environments. Mobile handheld devices,
which exploit the capabilities of wireless communications and
people’s mobility in their daily lives, have shown promise
in a variety of advanced pervasive applications. Integrating
such devices with other widely used technologies (e.g., en-
vironmental sensors and GPS receivers) could facilitate the
development of future cyber-physical systems (CPS) [18], such
as mobile urban sensing [14, 22], urban monitoring [12, 16],
and geospatial tagging (geotagging) systems [2, 3].

Among these applications, geotagging is an emerging and
very promising application because it can help users find
a wide variety of location-specific information, and thereby
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facilitate the development of advanced location-based services
(LBS). For instance, in a geotagging system, a user might ‘tag’
an Italian restaurant with its latitude and longitude coordinates,
a picture of the restaurant, and its menu; and another user
might ask the LBS provider: “Are there any Italian restaurants
nearby?” The provider will then search the geospatial database
provided by the geotagging system.

A conventional geotagging system operates in two phases.
First, users must prepare the GPS coordinates and other
descriptive materials (e.g., text, images, or a video clip) of the
target object; then they have to upload the information to the
system’s website. The process is inconvenient and therefore
frustrates end users. Moreover, the geotagged items tend to
cluster in hot spots, as they are provided voluntarily by the
system users. Since most people are interested in popular
items, conventional systems tend to favor general objects (e.g.,
museums and restaurants), rather than specialized ones (e.g.,
restaurants that allow pets). As a result, the scalability and
extensibility of the systems are limited, so a solution that can
properly address the above three issues is highly desirable.

Inspired by the concept of ‘Games with a Purpose’ (GWAP)
[28, 30], several researchers have proposed GWAP-based geo-
tagging systems in recent years [6, 9, 11, 15, 23-26]. Unlike
conventional approaches, GWAP-based geotagging systems
are asynchronously interactive. Moreover, they transform the
geotagging process into a game that is entertaining and ap-
pealing to players. As a result, they can successfully out-
source the geo-parsing and geo-coding processes, which are
highly sophisticated and labor-intensive, to humans by taking
advantage of people’s desire to socialize and be entertained
[17, 27]. Since a mission can be initiated by any person, at any
location, and in any context, GWAP-based geotagging systems
are better able to provide information about less popular spots
and specialized topics. In addition, because each mission can
be initiated and processed on handhelds, the systems are not
affected by the legacy problem of the two-phase operating
model.

Existing GWAP-based geotagging approaches focus on the
design, implementation, and measurement of real-world ap-
plications/systems; however, some recent studies have shown
that the performance of GWAP systems can be improved
significantly if they are played with strategies [10]. This
finding motivates us to investigate design strategies for generic



GWAP-based geotagging systems. To this end, we analyze
the intrinsic properties of a generic GWAP-based geotagging
system, and evaluate the system performance in terms of
throughput and fairness under synthetic and realistic mobility
scenarios.

The contribution of this work is three-fold. First, to model
a generic GWAP-based geotagging system, we present a
detailed analysis that can be applied to existing systems easily.
Second, we develop three metrics to evaluate the performance
of GWAP-based geotagging systems. Third, we design five
task assignment algorithms, namely, the Random Assign-
ment algorithm (RA), the Simple Assignment algorithm (SA),
the Acceptance-Rate-First Assignment algorithm (ARFA), the
Least-Throughput-First Assignment algorithm (LTFA), and the
Hybrid Assignment algorithm (HA). We perform a compre-
hensive set of simulations to evaluate the algorithms’ perfor-
mances in various scenarios. Based on the results, we draw
the following conclusions.

1) Although the HA scheme achieves the best performance
in terms of system utility, it is not appropriate for real-
world deployment because it is computation-hungry. In
contrast, the LTFA is suitable, since its performance
is comparable to that of the HA scheme, while its
computational complexity is moderate and acceptable.

2) It is better to assign as many multiple tasks as possible
in each round, and thereby maximize the system utility.
However, players may feel annoyed if too many tasks
are assigned at the same time in a round.

3) Therefore, to maximize the system utility, it is recom-
mended that multiple tasks be assigned one by one in
each round.

The remainder of this paper is organized as follows. Sec-
tion II contains a review of related works on GWAP-based
geospatial tagging systems. In Section III, we present our
analysis of such systems, and discuss three evaluation metrics.
In Section IV, we compare the five proposed task assignment
algorithms, namely the RA, SA, ARFA, LTFA, and HA
schemes. In Section V, we analyze the simulation results. We
then summarize our conclusions in Section VI.

II. BACKGROUND

The Games With A Purpose (GWAP) genre [28, 30] is
a type of Human Computation that outsources certain steps
of the computational process to humans [17, 27]. By taking
advantage of people’s desire to be entertained, GWAP attract
people to play voluntarily, and also produce useful metadata
as a by-product. The games have shown promise in solving a
variety of problems, such as image annotation [29] and com-
monsense reasoning [20, 31], which computer computation has
been unable to resolve completely thus far.

Several GWAP-based geospatial tagging (geotagging) appli-
cations have been proposed in recent years [6, 9, 11, 15, 23—
26]. Generally, they can be grouped into two categories, non
mission-based and mission-based, depending on the level of
interaction among the players in a game. Non mission-based
GWAP geotagging systems perform human computation by
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providing players with incentives to contribute geospatial tags
voluntarily, without implementing the concept of missions
[23-26]. For instance, the GeoTicTacToe [26] game, which is
based on the traditional TicTacToe game, is used to study the
synchronization problem in geospatial gaming systems. In the
CityPoker [25] game, which is an adaptation of the popular
card game, each player must try to improve his/her starting
hand by changing cards at 15 locations in the real world. By
analyzing the players’ tracks, CityPoker provides researchers
with a way to model the players’ behavior and interpret
the trajectory of a person moving in a spatial environment.
The results can help spatially grounded intentional systems
provide adequate services automatically according to the users’
intentions. Moreover, CityExplorer, proposed by Matyas et al
[23, 24], is a location-based variant of the popular board game
Carcassonne [1], which only allows players to place tokens
(followers) in predefined types of real-world locations. As a
result, players are “forced” to explore the unstructured game
area, which allows the system to collect specific geospatial
data, such as the geographic coordinates and the classifications
of real-world objects, as a by-product.

As their name suggests, mission-based GWAP geotagging
systems generate ‘missions’ that players must solve. They pro-
vide incentives via a reward scheme that gives points to players
when they contribute to the system (e.g., when they initiate or
solve a task, or review a solution) [6, 9, 11, 15]. For instance,
Hitcher [11] is a location-based mobile game that exploits
the cellular infrastructure. Specifically, in a Hitcher game,
players create digital hitch hikers (with names, destinations
and questions to ask other players) and drop them into their
current cellular phone cell; or they pick up available hitchers
from their current cell, answer their questions, carry them to
new locations, and drop them again. As the hitchers pass from
player to player, phone to phone and cell to cell, the system
collects the meaningful space names of each cell as a by-
product. MobiMission [15] is a location-based pervasive social
game in which missions are created, solved, and reviewed by
players. The system does its best to assign “nearby” missions
to players (e.g., Find a good cafe near the Empire State
Building). If there are no nearby missions, it assigns “location-
independent” missions instead (e.g., Take a picture of a tall
building). Similarly, in the Gopher game [9], missions are
created, solved, and reviewed by players, but the system only
assigns missions to “nearby” players. Finally, the Eyespy game
[6] allows players to tag geographic locations with photos or
text; or ‘confirm’ the locations of places that other players
have tagged. As a result, Eyespy produces a collection of
recognizable and locatable geographic details, which could be
used for navigation and location-based applications.

Since non mission-based games follow certain rules, in this
study, we regard them as special instances of mission-based
systems with multiple tasks that are assigned all at once in each
round. In this context, ‘multiple tasks’ means all the actions
that players are allowed to take.



Solver arrival

Solver arrival

Receive k tasks
from the system

Yes

Receive one task
from the system

Yes Yes

Do nothing Contribute to Do acthics Contribute to
8 the system & the system
i+ i+

(a) all-at-once assignment (b) one-by-one assignment

Fig. 1. The flowcharts of the task assignment approaches when a solver
enters the system.

III. GWAP-BASED GEOTAGGING SYSTEMS
A. Game Description

In this subsection, we describe a generic GWAP-based
geotagging system that is centralized and mission-based. The
server is responsible for data storage and task assignment,
while the clients are mobile players equipped with GPS-
enabled handhelds and wireless connectivity (e.g., 3G/WiFi)
to the server via the Internet. There are two game-playing
roles: Requester and Solver; and players are allowed to switch
between the roles freely during run time.

We assume that there are N locations of interest (LOI) in a
game, and that the server maintains N FIFO-based task queues
for each LOI in the system. Let (); denote the task queue of
the i-th LOI, and let players arrive at the i-th LOI at a Poisson
rate of \; per time unit. We denote the ratio of the number of
Requesters over the number of Solvers as r (i.e., the Requester
arrival rate is ﬁ)\i and the Solver arrival rate is %)\i). The
Requester always initiates a new task at his current LOI (e.g.,
What is the best Chinese restaurant in this area?). Thus, the
task, along with the requester’s ID and the timestamp, is stored
in his current LOI’s task queue on the server. Meanwhile, the
Solver is assigned the headmost tasks of K distinct task queues
at most () < N) and has to decide whether to accept any
one of them. The K tasks may be assigned all at once, or in a
one-by-one manner, as shown in Figure 1. The task acceptance
decision may be based on a combination of factors, such as
the distance and the popularity of the task’s LOIL. Once the
solver accepts a task, he must solve it and thus contribute to
the system.

To be effective, the system must achieve two task assign-
ment goals. First, it must solve as many tasks (i.e., improve
the assignment acceptance rate) as possible. This tends to
favor popular LOIs at the expense of unpopular ones (i.e.,
the ‘starvation’ problem). Second, the system needs to strike
a balance between the outcomes of LOIs (i.e., the number of
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each LOI's outcomes should be in proportion to the LOI’s
popularity). This may result in a low acceptance rate of some
task assignments (i.e., the ‘Equality of Outcome’ problem).
Thus, a clever task assignment strategy that can accommodate
the two goals is highly desirable. To this end, we formulate
the problem as a variant of the classic scheduling problem
[7, 8, 21]. Moreover, we analyze the intrinsic properties of
GWAP-based geotagging systems, and evaluate several system
implementation strategies.

B. Game Analysis

First, we model the willingness of a solver u to accept the
assignment of a task v. In this study, a player’s willingness
is determined intuitively based on a combination of factors,
such as the distance and popularity of the assigned task.
Specifically, the shorter distance between u and v, the more
willing u will be to accept v; and the more popular the
associated LOI of v, the greater the probability that u will
accept v. We define W (u,v) as the willingness (i.e., the
likelihood) that u will accept v as follows:

W (u,v) = min(fa(u,v) x fp(v)70'95)’ 1

where fg(u,v) represents the distance factor and fp(v) rep-
resents the popularity factor of the task v for the solver
u. Moreover, we set the upper bound of W(u,v) at 0.95
because a player is only allowed to tackle one task in each
round, even if there are multiple tasks for which the values of
fa(u,v) x fp(v) are equal to or greater than 1.

Note that the definitions of f4(u,v) and f,(v) are flexible
and depend on the implementation of the system. However,
they should satisfy the following criteria: 1) the value of
fa(u,v) decreases monotonically as the distance between u’s
LOI and v’s LOI increases; and 2) 0 < fp(v) < 1, and the
value of fy,(v) increases monotonically with the popularity of
v’s LOL We define fy(u,v) and fp(v) as follows:

o The distance factor fy(u,v): We adopt the Sigmoid
Function' to model the distance factor fy(u,v):

1

fa(u,v) =1.5 - T o—dwa)’

2
where d(u,v) is the Euclidian distance between u and v;
7 is the threshold that determines whether the distance
affects the solver’s decision in a positive or negative way
(i.e., f4(u,v) > 1 when the distance between v and v is
less than 7; otherwise, fg(u,v) < 1, as shown in Figure
2).

o The popularity factor fp(v): Since the ratio of the num-
ber of requesters over the number of solvers is r, the
solver arrival rate at the i-th LOI is T—’_\ﬁ Therefore, the
probability that there will be n solvers at the ¢-th LOI
can be derived by Equation 3. The popularity factor of
the task v (which is located at the i-th LOI) is defined

The Sigmoid Function, which starts with a small value and accelerates over
time to approach a maximum, is widely used for modeling natural processes
and complex system learning curves [13].
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Fig. 2. Illustration of the distance factor fy(u,v) with different d(u,v)
values.

by Equation 4, i.e., the probability that there will be at
least three solvers at the :-th LOL.

(—)‘L ne_%
s+l © 3)

fr(v) =1 —pi(0) — pi(1) — pi(2). )

However, since A; is unknown in real systems, we use
Equation 5 to approximate \; based on the exponential
moving average (EMA), where « is a constant smoothing
factor (0 < a < 1), and N;(t) is the number of player
arrivals at the i-th LOI at time £.

Xi(t + 1) = aXj(t) + (1 — @) Ni(t). 3)

Let N °wer(t) be the number of solver arrivals at the i-th
LOI at time ¢; u;(t, j) be the j-th solver arriving the i-th LOI
at time t; and v¥(t,5) be the k-th task assigned to him/her
(1 £k < K). For ease of presentation, we use Wy, to denote
W (ui(t, 5),vE(t, j)). We can obtain T (t,1), i.e., the expected
number of the tasks completed by the j-th solver at the i-th
LOI at time ¢, in two cases:

o Case I: The headmost K tasks are assigned all at once.
Let Cy, be the probability that the j-th solver will choose
to complete the k-th task, and Cy be the probability that
the solver will not select any of the tasks. We calculate
Ck and Cp by Equation 6, and then derive T7(t,4) by
Equation 7.

Wi Tlie1 i 1-W) i 1<k<K;

Cr = (©6)
TTre, (1—Wh) if k= 0.
L Co
T(t, i) =1 - ———. )
EkK=o Ck

o Case 2: The headmost K tasks are assigned one-by-one.
In this case, T7(t,4) can be obtained by the complement
of the probability that the j-th solver will decline all of
the K tasks, i.e.,
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K
Ti(ti) =1— ] @ =W ®)
k=1
Let T'(¢,%) be the number of tasks completed by the solver
arrivals of the i-th LOI at time ¢; and let A(t) be the overall
number of tasks solved in the system up to time ¢. We derive
T'(t,%) and A(t) by Equations 9 and 10 respectively.

Nfolver (t)

T(ti)= Y. TI(ti). ©)
j=1
N t
At)=2_> T(i). (10)
i=1j=1

Let p; denote the popularity of the i-th LOL Then, we
can obtain T'(t,), the normalized system throughput at the
i-th LOI at time ¢t (w.r.t. p;); and derive [i(t), the average
normalized system throughput at time ¢, by Equations 11 and
12 respectively.

t ..
T(t,’l,) _ Zj:l T(]?Z)’ (11)
Di
1 X
) = w5 x D_T(t,9). (12)
=1

Moreover, the coefficient of variation of the normalized
system throughput at time ¢, c.v.(t), can be derived by:

VN, @) - A)?
co.(t) = O] .

13)

C. Evaluation Metrics

As mentioned earlier, GWAP-based geotagging systems
have two goals. To evaluate the system performance, we pro-
pose the following three evaluation metrics. First, the system
prefers best-efforts, i.e., solving as many tasks as possible.
Based on this criterion, we evaluate the system performance
using the throughput utility metric, Uiproughput (t), Which is
identical to A(t), i.e.,

Uthroughput (t) = A(t) .

Second, the system prefers fairness, i.e., the number of
solved tasks must be in proportion to the popularity of each
LOL. To assess this criterion, we use the fairness utility metric,
Utfairness(t), which is the inverse of c.v.(t); that is,

1
cu.(t)
To accommodate the two objectives, we design the third

metric called system utility, Usystem(t), by taking the product
of Uthroughput(t) and Ugairness(t), as shown in Equation 16.

(14)

Ufairness (t) = (15)

Usystem(t) = Uthroughput(t) X Ufair'ness(t)~ (16)



IV. SYSTEM STRATEGIES

In this section, we compare five task assignment algorithms
for generic GWAP-based geotagging systems, namely the
Random Assignment algorithm (RA), the Simple Assignment
algorithm (SA), the Acceptance-Rate-First Assignment algo-
rithm (ARFA), the Least-Throughput-First Assignment algo-
rithm (LTFA), and the Hybrid Assignment algorithm (HA).
Let COPY (Q;) denote the function that returns a copy of the
headmost task of Q;; and let POP(Q);) denote the function
that pops up and returns the headmost task from the task
queue ;. We discuss the five algorithms in the following
sub-sections.

A. Random Assignment Algorithm (RA)

The Random Assignment Algorithm (RA) assigns the head-
most tasks of K distinct task queues at random. The computa-
tional complexity of the RA scheme is O(N), and it provides
the baseline performance of the system in this study.

B. Simple Assignment Algorithm (SA)

The Simple Assignment Algorithm (SA) assigns the K
headmost tasks from the current LOI's task queue. SA is
the simplest scheme because its computational complexity is
O(1). It is adopted by most geospatial blogging systems where
the requester and the solver are at the same LOI. However, as
the scheme is not GWAP-based, it is not entertaining because
it is short of challenges, competition, and variety [30].

C. Acceptance-Rate-First Assignment Algorithm (ARFA)

The Acceptance-Rate-First Assignment Algorithm (ARFA)
assigns the headmost tasks of K distinct task queues that are
most likely to be accepted by the solver, as shown in Algorithm
1. The computational complexity of the ARFA algorithm is
approximately O(NlogN), since it has to sort the willingness
values of the headmost tasks from the N task queues. The
algorithm is a greedy and best-effort approach that only tries
to maximize the Uiproughput metric; therefore, it may result
in the starvation problem, especially for unpopular LOIs (i.e.,
the willingness estimate decreases in line with the popularity
factor, as shown in Equation 1).

D. Least-Throughput-First Assignment Algorithm (LTFA)

The Least-Throughput-First Assignment Algorithm (LTFA)
assigns the headmost tasks of K distinct task queues that have
yielded the least throughput, as shown in Algorithm 2. For
each LOI (i.e., O(N) steps), the algorithm has to calculate
the normalized system throughput in O(K\) steps, and sort
the calculation results in O(NlogN) steps; thus, the compu-
tational complexity of LTFA is approximately O(NlogN +
NK)). However, in practice, N is far larger than K and A,
so the computational complexity is approximately O(NlogN).
Similar to ARFA, the LTFA algorithm is a heuristics-based
approach that gives priority to the Ufgirness metric, which
may result in the ‘equality of outcome’ problem.
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Algorithm 1 The Acceptance-Rate-First Assignment (ARFA)
Ve
: for i =1...N do
Wii].value < W(u, COPY (Q;)); Wi].queue < i
: end for
: Sort W[i] by value in descending order
for i =1...K do
V< VUPOP(QW[i].queue)
: end for
: Return V'

—

O XN YR W

Algorithm 2 The Least-Throughput-First Assignment (LTFA)
V<0
:for i =1..N do __
T[i].value < T'(t,1); T[i].queue < i
: end for
: Sort T'[i] by value in ascending order
for i =1...K do
V< VUPOP(QT[i].queue)
: end for
: Return V'

R R - NV N TN

Algorithm 3 The Hybrid Assignment (HA)
Vel
: for : =1...N do
v < COPY(Qy)
Uli].value < calculate Ugysterm, assuming v is solved;
Uli].queue < i
end for
: Sort U[i] by value in descending order
: for i =1...K do
V< VUPOP(QU[i].queue)
: end for
: Return V'

o p—
T2 YRRADNEDN

E. Hybrid Assignment Algorithm (HA)

The Hybrid Assignment Algorithm (HA) assigns the head-
most task of the K distinct task queues that will yield the
highest system utility, as shown in Algorithm 3. For each
headmost task of the N queues (i.e., O(N) steps), the algo-
rithm must calculate the system utility, which is a combination
of Uthroughput (ie., O(N) steps) and Ufaz'rness (i-e-’ O(N)
steps). Hence, the overall computational complexity of the
HA algorithm is approximately O(N?), which is the highest
among the five compared algorithms. Although this algorithm
provides the optimal solution for the system, its computational
overhead is a drawback.

V. EVALUATION

We use the Monte Carlo Simulation Method to evaluate
the five task assignment algorithms in three scenarios: the
exponential distribution scenario (EXP), the Self-similar Least
Action Walk scenario (SLAW), and the Taipei city scenario
(TPE). It is assumed that there are 400 LOIs uniformly



distributed on a 20 x 20 grid, and that players arrive at the
i-th LOI at a Poisson rate of \; per time unit. In each scenario,
the value of \; is determined as follows:

1) The EXP scenario: the value of )\; is determined based
on an exponential distribution with the rate parameter
set to 0.2.

2) The SLAW scenario: we apply the SLAW model [19]
to a 2,000 x 2,000 area, and set the SLAW parameters
n_wp (i.e., the number of waypoints to be generated)
and v_Hurst (i.e., the Hurst parameter used in frac-
tional Brownian motion) to 2,000 and 0.75 respectively.
After using the SLAW generator [5] to generate the
waypoints, we divide the area into a 20 x 20 equal-
sized grid, and determine the value of A; by counting the
number of waypoints in the ¢-th cell. The mean and the
standard deviation of \; are 6 and 11.4926 respectively.

3) The TPE scenario: we use the map of central Taipei
(north to the Taipei SongShan Airport, east to the Taipei
City Hall, south to National Taiwan University, and west
to Taipei Main Station), which covers approximately 25
sq. km, and divide it into a 20 x 20 equal-sized grid.
To determine the value of \;, we count the number of
bus stops in the i-th cell’>. The mean and the standard
deviation of \; are 3.4485 and 2.2394 respectively.

For convenience, we set the smoothing factor o (cf. Equa-
tion 5) to 0.95. Moreover, unless otherwise specified, we
assume that two-thirds of the arriving players are requesters,
and the other one-third comprises solvers (i.e., r=2). The
distance threshold (cf. Equation 2) is set to five cell units (i.e.,
7=5). Each requester initiates a new task at his current LOI,
and each solver is assigned K tasks in a round using one of
the five task assignment algorithms. All the results presented
here are based on the average performance of 100 simulation
runs.

A. Evaluation results when K =1

First, we evaluate the five task assignment algorithms in
the three scenarios when the number of tasks assigned in each
round, K, is equal to one. Figures 3 and 4 compare, respec-
tively, the system throughput performance and the coefficient
of variation of the normalized system throughput performance.
We observe that the ARFA scheme achieves the highest
throughput performance, but it yields the worst coefficient
of variation performance. This is because the scheme always
assigns the tasks with the highest willingness estimates (i.e.,
Equation 1); thus, it is more productive than the other schemes,
but at the expense of increased unfairness. In contrast, because
the LTFA scheme gives priority to fairness, it achieves a good
coefficient of variation performance, as shown in Figure 4;
however, it suffers from the equality of outcomes problem (i.e.,
lower throughput performance), as shown in Figure 3. The
results in Figure 4 also show that the LTFA curve oscillates a
great deal at the beginning of the SLAW and TPE scenarios.

2Information about bus routes in Taipei city is available at http:/www.e-
bus.taipei.gov.tw/english/en_index_6_1.html
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TABLE I
THE TIME REQUIRED BY EACH ALGORITHM TO FINISH ONE SIMULATION
ROUND IN THE THREE SCENARIOS. (UNIT: SECONDS)

RA SA ARFA LTFA HA
O(N) | 0(1) | O(NlogN) | O(NlogN) | O(N?)
EXP 14.90 | 10.93 234.27 424.67 3,280.70
SLAW [ 16.07 | 11.95 239.68 460.79 3,230.19
TPE 13.64 | 8.95 85.76 153.13 1,149.50

This is because its c.v.(t) performance relies to a large extent
on the accuracy of the A estimation (cf. Equation 5), which
needs a warm-up period to become stable and accurate.

By combining the two metrics, we can compare the system
utility performance of the five algorithms, as shown in Figure
5. The results demonstrate that the HA scheme significantly
outperforms the other schemes. We also observe that, although
the RA and SA schemes represent the “golden mean” in Fig-
ures 3 and 4, they are not suitable because their system utility
performance is poor. In terms of computational complexity,
LTFA is the most efficient scheme (see Table I), because its
system utility performance is comparable to that of the HA
scheme, but its computational complexity is moderate.

Figure 6 compares the distributions of the solve rates of
the five algorithms. The ‘solve rate’ means percentage of
tasks that have been solved at each LOI. The results show
that under the ARFA scheme, more than 50% of the LOIs
produce zero outcomes (i.e., the solve rate is zero), which
confirms our intuition that the scheme tends to suffer from
the starvation problem. Moreover, we observe that the curves
of the HA and LTFA schemes are nearly vertical, while the
others are slanting. The results also confirm our intuition that
the two schemes are better able to preserve the fairness of the
normalized system throughput. In addition, the HA scheme’s
solve rate is higher than that of the LTFA scheme because
its throughput performance is better, as shown in Figure 3.
Finally, we find that the ARFA curve rises sharply in the
SLAW and TPE scenarios, but not in the EXP scenario. This
is because the scenarios are based on a 2D mobility model,
whereas the EXP scenario is a 1D model. Consequently, the
SLAW and TPE scenarios are better able to capture the spatial
locality of popular LOIs. The ARFA scheme can leverage this
characteristic to find a task in nearby areas easily, and thereby
increase the value of the distance factor and the willingness
estimate.

In addition, the results in Figure 7 show that the system
utility of the SA and ARFA schemes is consistent regardless
of the value of 7; whereas the system utility of the RA,
LTFA and HA schemes increases with 7. This is because
the SA scheme always assigns the tasks that are at the same
LOI as the solver, and the ARFA scheme always assigns the
tasks that have the highest willingness values; therefore, the
two schemes are invariant to changes in the value of 7. The
other schemes are sensitive to the changes in 7 because the
willingness estimate that the solver will accept the assignment
increases as 7 increases (i.e., a higher 7 value yields a higher
distance factor value, and thus a greater willingness value). For
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Fig. 5. The simulated system utility performance in the three scenarios, when K = 1.

instance, under the LTFA scheme, the solve rate curves shown
in Figure 8 shift to the right as the values of 7 increase (i.e., a
larger number of task assignments are accepted and solved). In
each scenario, the HA scheme outperforms the other schemes,
and the LTFA scheme is ranked second, regardless of the
values of 7.

B. Evaluation results when K > 1

As mentioned earlier, the LTFA scheme is the most suitable
for GWAP-based geotagging systems because its system utility
performance is competitive, and its computational complexity
is moderate. Therefore, in this subsection, we only evaluate
the LTFA algorithm when the system assigns more than one
task (i.e., K > 1) to a solver in each game round. Figure 9 and
Figure 10 show the system throughput performance and the
coefficient of variation of the normalized system throughput
performance when K tasks are assigned in a one-by-one
manner and an all-at-once manner respectively. Clearly, the
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system throughput increases with the value of K'; hence, the
larger the value of K, the faster the coefficient of variation
of the normalized system throughput will converge. This is
because the solver is more likely to contribute a solution to
one of the assigned tasks when the value of K increases,
so the system throughput will increase. Moreover, since the
LTFA algorithm favors the fairness criterion when assigning
tasks, the coefficient of variation of the normalized system
throughput performance also converges to the equilibrium state
more quickly.

Figure 11 shows that the system utility increases with the
value of K, and has a tendency to converge to an equilibrium
state when K is sufficiently large, regardless of whether the
K tasks are assigned in a one-by-one manner or an all-at-
once manner. However, since the value of K must not be too
large in practice (i.e., otherwise, the system will annoy and
discourage players), it is recommended that tasks should be
assigned in a one-by-one manner, because the system utility is
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consistently higher than when tasks are assigned all at once.

C. Discussion

We have presented an analysis of a generic GWAP-based
geotagging system, and described a comprehensive set of eval-
uations conducted to investigate the intrinsic properties of the
system. However, some issues have yet to be addressed. In the
following, we consider the issues that may arise when applying
our analysis in real GWAP-based geotagging systems.

First, the proposed model only considers the throughput and
fairness factors when measuring the performance of GWAP-
based geotagging systems. As a result, it may not be suffi-
ciently representative of the “productivity” and “quality” of the
system. For instance, a solver may take one month to provide
a high-quality solution to a task assigned by the system; or
he may just provide a random outcome in five minutes. It
may be possible to address this issue by adding two more
factors to the model, i.e., the time required to solve a task and
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the quality of each solution, which can be measured by using
human computation [28, 30]. We defer a detailed evaluation
of this issue to a future work.

Second, in this study, we assumed that » = 2 in all the
experiments. However, the value of r depends to a large extent
on the incentive mechanisms implemented in the system, so
it may impact the system utility. Specifically, if r is too small
(i.e., most players are solvers), the system will be short of tasks
to assign to solvers; conversely, if r is too large (i.e., most
players are requesters), the system will be short of solvers
to handle tasks. Clearly, there is one ‘optimal value’ of r
that can yield the highest system utility. Hence, on the one
hand, it is important to provide incentive mechanisms that
can motivate as many players as possible to contribute to
the system; and on the other hand, the incentive mechanism
must be adjusted dynamically so that the value of r can be
maintained around the optimal value. The incentive system
should be implemented on a case-by-case basis (i.e., it has
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to be tailored to the specific application, the attributes of the
prospective players, etc.). We also defer a detailed discussion
of this issue, as well as the optimal value of r with regard to
the value of K, to a future work.

Finally, the proposed model assumes each task is a simple
mission that involves only one LOI It does not consider
complex missions that comprise multiple LOIs (e.g., Find all
Indian restaurants along Hollywood Boulevard) and/or the
transitions among multiple LOIs (e.g., What is the fastest
way to get to the airport from downtown in rush hour?).
Obviously, the model requires substantial modification so that
it can handle such complex missions. For example, it is
necessary to 1) redefine the concept of system utility when
a task is comprised of multiple LOIs; and 2) provide both
quantitative and qualitative metrics to evaluate the transitions
among multiple LOIs. Again, we defer a detailed discussion
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of this issue to a future work.

VI. CONCLUSION

In this paper, we have studied emerging GWAP-based
geotagging systems, presented an analysis of their intrinsic
properties, and proposed three metrics to measure the system
performance. Based on our analysis, we design five task
assignment algorithms that incorporate different heuristics
and optimization strategies. Using a comprehensive set of
simulations of synthetic and realistic mobility scenarios, we
found that the Hybrid Assignment (HA) algorithm achieves
the best system utility performance, but it is too computation-
hungry to be deployed. In practice, the Least-Throughput-First
Assignment (LTFA) algorithm is the most suitable scheme
because its computational complexity is moderate, and its
overall performance is comparable to that of the HA scheme.



Moreover, to improve the system utility, it is better to assign as
many tasks as possible in each game round; however, assigning
too many tasks at the same time may annoy players. Finally,
when multiple tasks are assigned in each round, it is better to
assign them in a one-by-one manner, rather than an all-at-once
manner, in order to maximize the system utility. The proposed
analysis is simple and applicable to emerging GWAP-based
geotagging systems. We believe the results of this study could
improve the design and implementation of future GWAP-based
geotagging systems.
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